23 research outputs found

    Training less-experienced faculty improves reliability of skills assessment in cardiac surgery

    Get PDF
    OBJECTIVE: Previous work has demonstrated high inter-rater reliability in the objective assessment of simulated anastomoses among experienced educators. We evaluated the inter-rater reliability of less-experienced educators and the impact of focused training with a video-embedded coronary anastomosis assessment tool. METHODS: Nine less-experienced cardiothoracic surgery faculty members from different institutions evaluated 2 videos of simulated coronary anastomoses (1 by a medical student and 1 by a resident) at the Thoracic Surgery Directors Association Boot Camp. They then underwent a 30-minute training session using an assessment tool with embedded videos to anchor rating scores for 10 components of coronary artery anastomosis. Afterward, they evaluated 2 videos of a different student and resident performing the task. Components were scored on a 1 to 5 Likert scale, yielding an average composite score. Inter-rater reliabilities of component and composite scores were assessed using intraclass correlation coefficients (ICCs) and overall pass/fail ratings with kappa. RESULTS: All components of the assessment tool exhibited improvement in reliability, with 4 (bite, needle holder use, needle angles, and hand mechanics) improving the most from poor (ICC range, 0.09-0.48) to strong (ICC range, 0.80-0.90) agreement. After training, inter-rater reliabilities for composite scores improved from moderate (ICC, 0.76) to strong (ICC, 0.90) agreement, and for overall pass/fail ratings, from poor (kappa = 0.20) to moderate (kappa = 0.78) agreement. CONCLUSIONS: Focused, video-based anchor training facilitates greater inter-rater reliability in the objective assessment of simulated coronary anastomoses. Among raters with less teaching experience, such training may be needed before objective evaluation of technical skills

    Evaluation of simulation training in cardiothoracic surgery: The Senior Tour perspective

    Get PDF
    OBJECTIVE: The study objective was to introduce senior surgeons, referred to as members of the "Senior Tour," to simulation-based learning and evaluate ongoing simulation efforts in cardiothoracic surgery. METHODS: Thirteen senior cardiothoracic surgeons participated in a 2½-day Senior Tour Meeting. Of 12 simulators, each participant focused on 6 cardiac (small vessel anastomosis, aortic cannulation, cardiopulmonary bypass, aortic valve replacement, mitral valve repair, and aortic root replacement) or 6 thoracic surgical simulators (hilar dissection, esophageal anastomosis, rigid bronchoscopy, video-assisted thoracoscopic surgery lobectomy, tracheal resection, and sleeve resection). The participants provided critical feedback regarding the realism and utility of the simulators, which served as the basis for a composite assessment of the simulators. RESULTS: All participants acknowledged that simulation may not provide a wholly immersive experience. For small vessel anastomosis, the portable chest model is less realistic compared with the porcine model, but is valuable in teaching anastomosis mechanics. The aortic cannulation model allows multiple cannulations and can serve as a thoracic aortic surgery model. The cardiopulmonary bypass simulator provides crisis management experience. The porcine aortic valve replacement, mitral valve annuloplasty, and aortic root models are realistic and permit standardized training. The hilar dissection model is subject to variability of porcine anatomy and fragility of the vascular structures. The realistic esophageal anastomosis simulator presents various approaches to esophageal anastomosis. The exercise associated with the rigid bronchoscopy model is brief, and adding additional procedures should be considered. The tracheal resection, sleeve resection, and video-assisted thoracoscopic surgery lobectomy models are highly realistic and simulate advanced maneuvers. CONCLUSIONS: By providing the necessary tools, such as task trainers and assessment instruments, the Senior Tour may be one means to enhance simulation-based learning in cardiothoracic surgery. The Senior Tour members can provide regular programmatic evaluation and critical analyses to ensure that proposed simulators are of educational value

    Experience With the Cardiac Surgery Simulation Curriculum: Results of the Resident and Faculty Survey

    Get PDF
    BACKGROUND: The Cardiac Surgery Simulation Curriculum was developed at 8 institutions from 2010 to 2013. A total of 27 residents were trained by 18 faculty members. A survey was conducted to gain insight into the initial experience. METHODS: Residents and faculty were sent a 72- and 68-question survey, respectively. In addition to demographic information, participants reported their view of the overall impact of the curriculum. Focused investigation into each of the 6 modules was obtained. Participants evaluated the value of the specific simulators used. Institutional biases regarding implementation of the curriculum were evaluated. RESULTS: Twenty (74%) residents and 14 (78%) faculty responded. The majority (70%) of residents completed this training in their first and second year of traditional-track programs. The modules were well regarded with no respondents having an unfavorable view. Both residents and faculty found low, moderate, and high fidelity simulators to be extremely useful, with particular emphasis on utility of high fidelity components. The vast majority of residents (85%) and faculty (100%) felt more comfortable in the resident skill set and performance in the operating room. Simulation of rare adverse events allowed for development of multidisciplinary teams to address them. At most institutions, the conduct of this curriculum took precedence over clinical obligations (64%). CONCLUSIONS: The Cardiac Surgery Simulation Curriculum was implemented with robust adoption among the investigating centers. Both residents and faculty viewed the modules favorably. Using this curriculum, participants indicated an improvement in resident technical skills and were enthusiastic about training in adverse events and crisis management

    MADNESS: A Multiresolution, Adaptive Numerical Environment for Scientific Simulation

    Full text link
    MADNESS (multiresolution adaptive numerical environment for scientific simulation) is a high-level software environment for solving integral and differential equations in many dimensions that uses adaptive and fast harmonic analysis methods with guaranteed precision based on multiresolution analysis and separated representations. Underpinning the numerical capabilities is a powerful petascale parallel programming environment that aims to increase both programmer productivity and code scalability. This paper describes the features and capabilities of MADNESS and briefly discusses some current applications in chemistry and several areas of physics

    Simulation-Based Training in Cardiac Surgery

    Get PDF
    BACKGROUND: Operating room surgical training has significant limitations. This study hypothesized that some skills could be learned efficiently and safely by using simulation with component task training, deliberate practice, progressive complexity, and experienced coaching to produce safer cardiac surgeons. METHODS: Training modules included cardiopulmonary bypass, coronary artery bypass grafting, aortic valve replacement, massive air embolism, acute intraoperative aortic dissection, and sudden deterioration in cardiac function. Using deliberate practice, first-year cardiothoracic surgical residents at eight institutions were trained and evaluated on component tasks for each module and later on full cardiac operations. Evaluations were based on five-point Likert-scale tools indexed by module, session, task items, and repetitions. Statistical analyses relied on generalized linear model estimation and corresponding confidence intervals. RESULTS: The 27 residents who participated demonstrated improvement with practice repetitions resulting in excellent final scores per module (mean ± two SEs): cardiopulmonary bypass, 4.80 ± 0.12; coronary artery bypass grafting, 4.41 ± 0.19; aortic valve replacement, 4.51 ± 0.20; massive air embolism, 0.68 ± 0.14; acute intraoperative aortic dissection, 4.52 ± 0.17; and sudden deterioration in cardiac function, 4.76 ± 0.16. The transient detrimental effect of time away from training was also evident. CONCLUSIONS: Overall performance in component tasks and complete cardiac surgical procedures improved during simulation-based training. Simulation-based training imparts skill sets for management of adverse events and can help produce safer surgeons

    Tuning ultrafast electron thermalization pathways in a van der Waals heterostructure

    Get PDF
    Ultrafast electron thermalization - the process leading to Auger recombination, carrier multiplication via impact ionization and hot carrier luminescence - occurs when optically excited electrons in a material undergo rapid electron-electron scattering to redistribute excess energy and reach electronic thermal equilibrium. Due to extremely short time and length scales, the measurement and manipulation of electron thermalization in nanoscale devices remains challenging even with the most advanced ultrafast laser techniques. Here, we overcome this challenge by leveraging the atomic thinness of two-dimensional van der Waals (vdW) materials in order to introduce a highly tunable electron transfer pathway that directly competes with electron thermalization. We realize this scheme in a graphene-boron nitride-graphene (G-BN-G) vdW heterostructure, through which optically excited carriers are transported from one graphene layer to the other. By applying an interlayer bias voltage or varying the excitation photon energy, interlayer carrier transport can be controlled to occur faster or slower than the intralayer scattering events, thus effectively tuning the electron thermalization pathways in graphene. Our findings, which demonstrate a novel means to probe and directly modulate electron energy transport in nanoscale materials, represent an important step toward designing and implementing novel optoelectronic and energy-harvesting devices with tailored microscopic properties.Comment: Accepted to Nature Physic

    Teaching behaviors in the cardiac surgery simulation environment

    Get PDF
    OBJECTIVE: To understand how teaching behaviors contribute to simulation-based learning, we used a 7-category educational framework to assess the teaching behaviors used in basic skills training. METHODS: Twenty-four first-year cardiothoracic surgery residents and 20 faculty participated in the Boot Camp vessel anastomosis sessions. A portable chest model with synthetic graft and target vessels and a tissue-based porcine model simulated coronary artery anastomosis. After each 2-hour session on days 1 and 2, residents assessed teaching behaviors of faculty using a 20-item questionnaire based on the 5-point Likert scale. After session on day 1, faculty completed a self-assessment questionnaire. At 3 months, faculty completed self-assessment questionnaires regarding teaching behaviors in simulation and clinical settings. Each questionnaire item represents 1 or more teaching categories: "learning climate," "control of session," "communication of goals," "promoting understanding and retention," "evaluation," "feedback," and "self-directed learning." RESULTS: Generally, resident ratings indicated that faculty showed positive teaching behaviors. Faculty self-assessment ratings were all lower (P < .025) than those assigned to them by the residents except for 1 component representative of "feedback," which approached significance (P = .04); 2 items, representative of "promoting understanding and retention" and "evaluation", had mean scores of less than 3. At 3 months, compared with self-assessment at Boot Camp, faculty ratings suggested improved teaching behaviors in their simulation settings in the following: "learning climate," "control of session," "communication of goals," "promoting understanding and retention," and "evaluation." The simulation environment was perceived as more positive for technical skills training in certain aspects compared with clinical setting: instructor reviewed function and operation of equipment with learner before session (representative of "promoting understanding and retention") and instructor allowed the learner ample time to practice (representative of "control of session" and "promoting understanding and retention") (P < .025). CONCLUSIONS: Simulation-based skills training is perceived by residents to be associated with positive teaching behaviors. Faculty self-ratings indicate that they do not always use many of these teaching behaviors and that their performance can be improved. The simulation setting may provide greater opportunity for positive teaching behaviors compared with the clinical environment

    Efficient multiwavelet representation of the projector on divergence-free functions

    No full text
    Thesis (Ph.D.)--Massachusetts Institute of Technology, Dept. of Mathematics, 2000.Includes bibliographical references (leaves 75-78).by George I-Pan Fann.Ph.D
    corecore